首页> 外文OA文献 >Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated.
【2h】

Reactive direction control for a mobile robot: A locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated.

机译:移动机器人的反应性方向控制:当将一对双边模型蝗虫视觉神经元整合在一起时,就会出现类似蝗虫的逃生方向控制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ?randomised winner-take-all? or ?steering wheel? algorithms for LGMD model integration, the Khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research.
机译:蝗虫拥有一对双侧唯一可识别的视觉神经元,它们对接近物体的图像产生强烈反应。这些神经元称为小叶巨人运动检测器(LGMD)。对蝗虫的LGMD进行了广泛的研究,这导致了LGMD模型的开发,该模型可用于机器人应用中的人工碰撞检测器。迄今为止,机器人只配备了一个中央人工LGMD传感器,当检测到潜在碰撞物体时,这会触发非定向停止或旋转。显然,要使机器人具有自主行为,它必须对来自不同方向的刺激做出不同反应。在这项研究中,我们在配备了普通摄像机和全景摄像机的Khepera机器人中实现了一对LGMD模型。我们利用蟑螂逃逸方向控制研究的启发,整合了这些LGMD模型的响应。使用“随机赢家通吃”吗?还是方向盘?在LGMD模型集成算法中,Khepera机器人可以实时逃避即将到来的威胁,逃生方向的分布与实际蝗虫相似。我们还发现,通过优化这些算法,我们可以使用它们来整合实际跳跃蝗虫的左右DCMD响应,并重现蝗虫在特定试验中采取的实际逃生方向。我们的结果通过使蝗虫LGMD对机器人行为进行反应性控制,大大促进了基于蝗虫LGMD的人工碰撞检测和规避系统的开发。这种方法的成功也可能表明未来生物学研究中将要追求的一些重要领域。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号